Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Organometallics ; 42(15): 1869-1881, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37592952

RESUMEN

The synthesis and characterization of 24 ruthenium(II) arene complexes of the type [(p-cym)RuCl(Fc-acac)] (where p-cym = p-cymene and Fc-acac = functionalized ferrocenyl ß-diketonate ligands) are reported, including single-crystal X-ray diffraction for 21 new complexes. Chemosensitivity studies have been conducted against human pancreatic carcinoma (MIA PaCa-2), human colorectal adenocarcinoma p53-wildtype (HCT116 p53+/+) and normal human retinal epithelial cell lines (APRE-19). The most active complex, which contains a 2-furan-substituted ligand (4), is 5x more cytotoxic than the analogs 3-furan complex (5) against MIA PaCa-2. Several complexes were screened under hypoxic conditions and at shorter-time incubations, and their ability to damage DNA was determined by the comet assay. Compounds were also screened for their potential to inhibit the growth of both bacterial and fungal strains.

2.
Front Microbiol ; 14: 1067906, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36950169

RESUMEN

Introduction: Trees interact with fungi in mutualistic, saprotrophic, and pathogenic relationships. With their extensive aboveground and belowground structures, trees provide diverse habitats for fungi. Thus, tree species identity is an important driver of fungal community composition in forests. Methods: Here we investigate how forest habitat (bark surface vs. soil) and tree species identity (deciduous vs. coniferous) affect fungal communities in two Central European forests. We assess differences and interactions between fungal communities associated with bark surfaces and soil, in forest plots dominated either by Fagus sylvatica, Picea abies, or Pinus sylvestris in two study regions in southwestern and northeastern Germany. Results: ITS metabarcoding yielded 3,357 fungal amplicon sequence variants (ASVs) in the northern and 6,088 in the southern region. Overall, soil communities were 4.7 times more diverse than bark communities. Habitat type explained 48-69% of the variation in alpha diversity, while tree species identity explained >1-3%. NMDS ordinations showed that habitat type and host tree species structured the fungal communities. Overall, few fungal taxa were shared between habitats, or between tree species, but the shared taxa were highly abundant. Network analyses, based on co-occurrence patterns, indicate that aboveground and belowground communities form distinct subnetworks. Discussion: Our study suggests that habitat (bark versus soil) and tree species identity are important factors structuring fungal communities in temperate European forests. The aboveground (bark-associated) fungal community is currently poorly known, including a high proportion of reads assigned to "unknown Ascomycota" or "unknown Dothideomycetes." The role of bark as a habitat and reservoir of unique fungal diversity in forests has been underestimated.

3.
Ambio ; 52(2): 425-439, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36394771

RESUMEN

Calls for supporting sustainability through more and better research rest on an incomplete understanding of scientific evidence use. We argue that a variety of barriers to a transformative impact of evidence arises from diverse actor motivations within different stages of evidence use. We abductively specify this variety in policy and practice arenas for three actor motivations (truth-seeking, sense-making, and utility-maximizing) and five stages (evidence production, uptake, influence on decisions, effects on sustainability outcomes, and feedback from outcome evaluations). Our interdisciplinary synthesis focuses on the sustainability challenge of reducing environmental and human health risks of agricultural pesticides. It identifies barriers resulting from (1) truth-seekers' desire to reduce uncertainty that is complicated by evidence gaps, (2) sense-makers' evidence needs that differ from the type of evidence available, and (3) utility-maximizers' interests that guide strategic evidence use. We outline context-specific research-policy-practice measures to increase evidence use for sustainable transformation in pesticides and beyond.


Asunto(s)
Plaguicidas , Humanos , Agricultura/métodos , Políticas , Incertidumbre
4.
Chemistry ; 27(4): 1311-1315, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33125815

RESUMEN

The first dicobalt(III) µ2 -peroxo N-heterocyclic carbene (NHC) complex is reported. It can be quantitatively generated from a cobalt(II) compound bearing a 16-membered macrocyclic tetra-NHC ligand via facile activation of dioxygen from air at ambient conditions. The reaction proceeds via an end-on superoxo intermediate as demonstrated by EPR studies and DFT. The peroxo moiety can be cleaved upon addition of acetic acid, yielding the corresponding CoIII acetate complex going along with H2 O2 formation. In contrast, both CoII and CoIII complexes are also studied as catalysts to utilize air for olefin and alkane oxidation reactions; however, not resulting in product formation. The observations are rationalized by DFT-calculations, suggesting a nucleophilic nature of the dicobalt(III) µ2 -peroxo complex. All isolated compounds are characterized by NMR, ESI-MS, elemental analysis, EPR and SC-XRD.

5.
Chem Sci ; 9(43): 8307-8314, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30542579

RESUMEN

For years, Cu(iii)NHCs have been proposed as active intermediates in Cu(i)NHC catalyzed reactions, yielding the desired products by reductive elimination, but until today, no one has ever reported the characterisation of such a compound. When working on the synthesis of biomimetic transition metal (NHC) complexes and their application in homogeneous catalysis, we recently found a highly unusual reactivity for Cu(ii) acetate in the presence of a particular cyclic tetra(NHC) ligand. Therein, the formation of the first stable CuNHC compound, displaying Cu in the formal oxidation state +III, by simple disproportionation of Cu(ii) acetate in dimethyl sulfoxide (DMSO) was observed. At elevated temperatures selective mono-oxidation of the NHC ligand occurs, even under anaerobic conditions. Acetate was identified as the origin of the oxygen atom by 18O-labelling experiments. The remarkably high stability of the title compound was furthermore proven electrochemically by cyclic voltammetry. An in-depth investigation of its reactivity revealed the involvement of four additional compounds. Three of them could be isolated and characterised by 1H/13C-NMR, single crystal XRD, mass spectrometry and elemental analysis. The fourth, a Cu(i)NHC intermediate, formed by formal reductive elimination from the Cu(NHC)3+ compound, was characterised in situ by 1H/13C-NMR and computational methods.

6.
Dalton Trans ; 47(29): 9755-9764, 2018 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-29987275

RESUMEN

Four novel organorhenium(vii) oxides of the type L-ReO3 are presented: [4-(trifluoromethyl)phenyl]trioxorhenium 1b, [4-(trifluoromethoxy)phenyl]trioxorhenium 2b, [4-(trifluoromethyl)tetrafluorophenyl]trioxorhenium(THF) 3b·THF and (2,2,6,6-tetramethylpiperidin-1-yl)trioxorhenium 5. As intermediate products, the novel diarylzinc compounds bis[4-(trifluoromethoxy)phenyl]zinc 2a and bis[2,6-bis(trifluoromethyl)phenyl]zinc 4a were prepared. The properties and structure of 1b-5 were studied by means of 1H, 13C, 19F and 17O NMR, IR, MS, TGA and elemental analysis. Due to the strong Lewis acidity of the Re(vii) centres crystal structures of complexes 1b and 2b were obtained as THF adducts 1b·THF and 2b·THF. Complexes 1b, 2b, 3b·THF and 5 have been examined as catalysts in olefin epoxidation using cis-cyclooctene as a model substrate. Epoxide yields of around 80% and TOFs >1300 h-1 can be obtained with 1b, 2b and 3b·THF using TBHP as an oxidant in CDCl3 at 55 °C, exceeding the only reported catalytically active aryl trioxorhenium complex xylyltrioxorhenium (XTO). Moreover, 1b shows catalytic activity in the self-metathesis of 1-hexene with good yields using Et2AlCl as a co-catalyst. Additionally, 1b and 5 were found to be efficient catalysts for the ring-opening metathesis polymerization (ROMP) of norbornene. Polynorbornene with high molecular weight can be obtained in good yields at room temperature using RnAlCl3-n as a co-catalyst. 5 is the first example of an amido trioxorhenium(vii) complex active in olefin metathesis.

7.
Nat Commun ; 7: 10338, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26753620

RESUMEN

Autophagosomes are double-membrane vesicles that sequester cytoplasmic material for lysosomal degradation. Their biogenesis is initiated by recruitment of Atg9-vesicles to the phagophore assembly site. This process depends on the regulated activation of the Atg1-kinase complex. However, the underlying molecular mechanism remains unclear. Here we reconstitute this early step in autophagy from purified components in vitro. We find that on assembly from its cytoplasmic subcomplexes, the Atg1-kinase complex becomes activated, enabling it to recruit and tether Atg9-vesicles. The scaffolding protein Atg17 targets the Atg1-kinase complex to autophagic membranes by specifically recognizing the membrane protein Atg9. This interaction is inhibited by the two regulatory subunits Atg31 and Atg29. Engagement of the Atg1-Atg13 subcomplex restores the Atg9-binding and membrane-tethering activity of Atg17. Our data help to unravel the mechanism that controls Atg17-mediated tethering of Atg9-vesicles, providing the molecular basis to understand initiation of autophagosome-biogenesis.


Asunto(s)
Autofagia/genética , Proteínas Portadoras/genética , Proteínas de la Membrana/genética , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/metabolismo , Dicroismo Circular , Microscopía por Crioelectrón , Dispersión Dinámica de Luz , Inmunoprecipitación , Técnicas In Vitro , Liposomas , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Biogénesis de Organelos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Fracciones Subcelulares , Espectrometría de Masas en Tándem
8.
ChemSusChem ; 8(23): 4056-63, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26580492

RESUMEN

Organometallic Fe complexes with exceptionally high activities in homogeneous epoxidation catalysis are reported. The compounds display Fe(II) and Fe(III) oxidation states and bear a tetracarbene ligand. The more active catalyst exhibits activities up to 183 000 turnovers per hour at room temperature and turnover numbers of up to 4300 at -30 °C. For the Fe(III) complex, a decreased Fenton-type reactivity is observed compared with Fe(II) catalysts reported previously as indicated by a substantially lower H2 O2 decomposition and higher (initial) turnover frequencies. The dependence of the catalyst performance on the catalyst loading, substrate, water addition, and the oxidant is investigated. Under all applied conditions, the advantageous nature of the use of the Fe(III) complex is evident.


Asunto(s)
Compuestos Epoxi/química , Hierro/química , Metano/análogos & derivados , Compuestos Organometálicos/química , Catálisis , Compuestos Heterocíclicos/química , Hidroxilación , Metano/química , Compuestos Organometálicos/síntesis química
9.
Methods Mol Biol ; 905: 177-200, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22736004

RESUMEN

Small regulatory RNAs (sRNAs) are short, generally noncoding RNAs that act posttranscriptionally to control target gene expression. Over the past 10 years there has been a rapid expansion in the discovery and characterization of sRNAs in a diverse range of bacteria. Paradigm shifts in our understanding of the breadth of posttranscriptional control by sRNAs were achieved in a number of pioneering studies that involved immunoprecipitation of a known RNA chaperone, the near-ubiquitous Hfq, followed by sequencing to identify novel putative regulators and targets. To perform the converse experiment, we previously developed a method which uses an aptamer-tagged sRNA to allow purification of in vivo assembled RNA-protein complexes and subsequent identification of bound proteins. We successfully implemented this protocol using the Hfq-associated sRNA, InvR, tagged with a tandem repeat of the commonly used MS2-aptamer. Incorporation of the aptamer had no effect on sRNA stability or activity. InvR-MS2 could be effectively purified along with associated proteins, such as Hfq, using maltose binding protein fused to the MS2 coat protein (MBP-MS2) immobilized on an amylose column. Mass-spectroscopy was also used to identify previously uncharacterized protein partners. These results have been described previously (Said et al., Nucleic Acids Res 37:e133, 2009) and thus the figures presented here are intended solely as an illustrative guide to complement this detailed step-by-step protocol.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , ARN Pequeño no Traducido/metabolismo , Proteínas de Unión al ARN/metabolismo , Secuencia de Bases , Proteína de Factor 1 del Huésped/metabolismo , Datos de Secuencia Molecular , Plásmidos/genética , Unión Proteica , Estabilidad del ARN , ARN Pequeño no Traducido/química
10.
EMBO Mol Med ; 4(4): 269-82, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22311511

RESUMEN

Nuclear factor of activated T cells (NFAT) comprises a family of transcription factors that regulate T cell development, activation and differentiation. NFAT signalling can also mediate granulocyte and dendritic cell (DC) activation, but it is unknown whether NFAT influences their development from progenitors. Here, we report a novel role for calcineurin/NFAT signalling as a negative regulator of myeloid haematopoiesis. Reconstituting lethally irradiated mice with haematopoietic stem cells expressing an NFAT-inhibitory peptide resulted in enhanced development of the myeloid compartment. Culturing bone marrow cells in media supplemented with Flt3-L in the presence of the calcineurin/NFAT inhibitor Cyclosporin A increased numbers of differentiated DC. Global gene expression analysis of untreated DC and NFAT-inhibited DC revealed differential expression of transcripts that regulate cell cycle and apoptosis. In conclusion, these results provide evidence that calcineurin/NFAT signalling negatively regulates myeloid lineage development. The finding that inhibition of NFAT enhances myeloid development provides a novel insight into understanding how the treatment with drugs targeting calcineurin/NFAT signalling influence the homeostasis of the innate immune system.


Asunto(s)
Calcineurina/metabolismo , Hematopoyesis , Células Mieloides/citología , Factores de Transcripción NFATC/metabolismo , Transducción de Señal , Animales , Ciclosporina/farmacología , Células Dendríticas/citología , Células Dendríticas/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Inmunosupresores/farmacología , Ratones , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , Factores de Transcripción NFATC/genética , Regulación hacia Arriba
11.
J Vis Exp ; (44)2010 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-21048666

RESUMEN

Protozoan parasites are among the most devastating infectious agents of humans responsible for a variety of diseases including amebiasis, which is one of the three most common causes of death from parasitic disease. The agent of amebiasis is the amoeba parasite Entamoeba histolytica that exists under two stages: the infective cyst found in food or water and the invasive trophozoite living in the intestine. The clinical manifestations of amebiasis range from being asymptomatic to colitis, dysentery or liver abscesses. E. histolytica is one of the rare unicellular parasite with 5-methylcytosine (5mC) in its genome. It contains a single DNA methyltransferase, Ehmeth, that belongs to the Dnmt2 family. A role for Dnmt2 in the control of repetitive elements has been established in E. histolytica, Dictyostelium discoideum and Drosophila. Our recent work has shown that Ehmeth methylates tRNA(Asp), and this finding indicates that this enzyme has a dual DNA/tRNA(Asp) methyltransferase activity. This observation is in agreement with the dual activity that has been reported for D. discoideum and D. melanogaster. The functional significance of the DNA/tRNA specificity of Dnmt2 enzymes is still unknown. To address this question, a method to determine the tRNA methyltransferase activity of Dnmt2 proteins was established. In this video, we describe a straightforward approach to prepare an adequate tRNA substrate for Dnmt2 and a method to measure its tRNA methyltransferase activity.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Entamoeba histolytica/enzimología , ARN de Hongos/metabolismo , ARN de Transferencia/metabolismo , ADN (Citosina-5-)-Metiltransferasas/química , Entamoeba histolytica/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Metilación , ARN de Hongos/genética , ARN de Transferencia/genética
12.
RNA ; 16(3): 610-20, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20106954

RESUMEN

Pseudouridine is the most abundant of more than 100 chemically distinct natural ribonucleotide modifications. Its synthesis consists of an isomerization reaction of a uridine residue in the RNA chain and is catalyzed by pseudouridine synthases. The unusual reaction mechanism has become the object of renewed research effort, frequently involving replacement of the substrate uridines with 5-fluorouracil (f(5)U). f(5)U is known to be a potent inhibitor of pseudouridine synthase activity, but the effect varies among the target pseudouridine synthases. Derivatives of f(5)U have previously been detected, which are thought to be either hydrolysis products of covalent enzyme-RNA adducts, or isomerization intermediates. Here we describe the interaction of pseudouridine synthase 1 (Pus1p) with f(5)U-containing tRNA. The interaction described is specific to Pus1p and position 27 in the tRNA anticodon stem, but the enzyme neither forms a covalent adduct nor stalls at a previously identified reaction intermediate of f(5)U. The f(5)U27 residue, as analyzed by a DNAzyme-based assay using TLC and mass spectrometry, displayed physicochemical properties unaltered by the reversible interaction with Pus1p. Thus, Pus1p binds an f(5)U-containing substrate, but, in contrast to other pseudouridine synthases, leaves the chemical structure of f(5)U unchanged. The specific, but nonproductive, interaction demonstrated here thus constitutes an intermediate of Pus turnover, stalled by the presence of f(5)U in an early state of catalysis. Observation of the interaction of Pus1p with fluorescence-labeled tRNA by a real-time readout of fluorescence anisotropy and FRET revealed significant structural distortion of f(5)U-tRNA structure in the stalled intermediate state of pseudouridine catalysis.


Asunto(s)
Fluorouracilo/química , Hidroliasas/química , Seudouridina/biosíntesis , Animales , Transferencia Resonante de Energía de Fluorescencia , Humanos , Ratones , Procesamiento Postranscripcional del ARN , ARN de Transferencia de Leucina/química , Saccharomyces cerevisiae/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...